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AN ITERATIVE DECAMBERING APPROACH FOR
POST-STALL PREDICTION OF WING CHARACTERISTICS

USING KNOWN SECTION DATA
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Department of Mechanical and Aerospace Engineering,
North Carolina State University, Raleigh, NC 27695-7910

and
SungWan Kim‡

NASA Langley Research Center,
Hampton, VA 23681-2199

An iterative decambering approach for the post stall prediction of wings using known
section data as inputs is presented. The method can currently be used for incompressible
flow and can be extended to compressible subsonic flow using Mach number correction
schemes. A detailed discussion of past work on this topic is presented first. Next, an
overview of the decambering approach is presented and is illustrated by applying the
approach to the prediction of the two-dimensional Cl and Cm curves for an airfoil. The
implementation of the approach for iterative decambering of wing sections is then dis-
cussed. A novel feature of the current effort is the use of a multidimensional Newton
iteration for taking into consideration the coupling between the different sections of the
wing. The approach lends itself to implementation in a variety of finite-wing analysis
methods such as lifting-line theory, discrete-vortex Weissinger’s method, and vortex lat-
tice codes. Results are presented for a rectangular wing for α from 0 to 25 deg. The
results are compared for both increasing and decreasing directions of α, and they show
that a hysteresis loop can be predicted for post-stall angles of attack.

Nomenclature
C damping factor
CL wing lift coefficient
Cl airfoil lift coefficient
Cm airfoil pitching moment coefficient about the

quarter chord
c chord
F residual vector
f element of residual vector
i, j index of wing section
J Jacobian matrix
LLT lifting line theory
N number of wing sections
VLM vortex lattice method
x2 chordwise start location of the second decam-

bering function
α angle of attack
β angle of yaw
Γ strength of bound vortex
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δx vector containing the corrections to the New-
ton variables

δ1(x) first decambering function
δ2(x) second decambering function
θ2(x) angular coordinate corresponding to x2

Subscripts
max maximum
sec represents value for a wing section
visc represents value from two-dimensional viscous

experimental or computational data

Background and Introduction
With the remarkable success of Prandtl’s lifting-

line theory (LLT) in being able to predict the flow
past medium- to high-aspect ratio unswept wings in
incompressible flow, LLT became a standard tool for
computing wing aerodynamics. As is well known, LLT
uses a single unswept lifting line (or bound vortex) to
model the circulation on the wing. The strength of this
bound vortex, Γ, varies along the span. At any given
spanwise location, the change in Γ is shed as trail-
ing vorticity, which in turn causes induced velocities
along the lifting line. LLT enables the computation
of the Γ distribution for which the accompanying in-
duced velocities and the resulting effective angles of
attack along the span support the Γ distribution. For
this purpose, the classical Prandtl LLT assumes a lin-
ear lift-curve slope for the airfoil sections that form the
wing. This lift-curve slope is typically close to 2π per
radian.
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With the success of LLT in the prediction of wing
flows at low angles of attack, the attention soon turned
to whether LLT could be modified for the analysis of
wings where nonlinear lift-curve slopes for the airfoil
sections can be taken into consideration. The motiva-
tion was provided by the fact that the airfoil lift curve
often deviates from the linear curve due to separation
as the angle of attack approaches stall. Tani1 is be-
lieved to have developed the first successful technique
in 1934 for handling nonlinear section lift-curve slopes
in the LLT formulation. In his technique, a spanwise
bound vorticity (Γ) distribution is first assumed; this
distribution is used to compute the distribution of in-
duced velocities and hence induced angles and effective
angles of attack along the lifting line. The distribution
of effective angle of attack is then used to look up the
operating Cl of the local section using the known non-
linear Cl-α data for the airfoil. A new Γ distribution is
then computed from the spanwise Cl distribution. The
iteration is carried out until the Γ distribution con-
verges. This method was made popular by the NACA
report of Sivells and Neely2 in 1947 that provides a
detailed description of the method and implements a
tabular procedure for hand-calculation of the method
for unswept wings with arbitrary planform and airfoil
lift-curve slopes. In Ref. 2, this method was applied
for analysis of wings up to the onset of stall, i.e., un-
til a wing angle of attack at which some section on
the wing has Cl equal to the local section Clmax. At
higher angles of attack, where some sections on the
wing may have a negative lift-curve slope, this succes-
sive approximation approach appears to have failed.

According to Sears,3 Von Kármán noticed that
Prandtl’s lifting-line equation has nonunique solutions
for cases when the lift-curve slope becomes negative
(i.e. when the α increases past the onset of stall).
These nonunique solutions include both symmetrical
and antisymmetric lift distributions even when the ge-
ometry and onset flow are both symmetric. Sears3

mentions that Von Kármán further postulated that
even in the conditions just past the onset of wing stall,
when some sections of the wing may have positive lift-
curve slopes (pre-stall condition) and other sections
may have negative lift-curve slopes (post-stall condi-
tion), nonunique and asymmetric lift distributions are
possible. It occurred to Von Kármán and Sears that
the appearance of large and sometimes violent rolling
moments past stall on symmetric wind-tunnel mod-
els at zero yaw may be explained by the possibility of
asymmetric lift distributions at perfectly symmetric
flight conditions.

The investigation suggested by Von Kármán on
computing the symmetric and asymmetric lift distri-
butions on wings operating beyond stall was carried
out and was reported in a 1939 thesis4 by Schairer
working under the supervision of Sears. Schairer
apparently used the same procedure as that pio-

neered by Tani, but had to use a tedious trial-
and-error procedure to find the solutions as Tani’s
successive-approximation procedure failed to work for
these partially-stalled cases. Sears3 presents some of
Schairer’s results for a flat, untwisted elliptic wing of
aspect ratio 10.19 operating beyond stall. The results
show solutions consisting of asymmetric lift distribu-
tions (in addition to a classical symmetric solution)
with large associated rolling moments for a narrow
range of angles of attack just beyond stall. Sears
mentions that the choice between the symmetric and
asymmetrical solution would require the formidable so-
lution of the relative stability of the two flows. Sears
concludes by pointing out the need for further progress
on the analysis of wings at near- and post-stall condi-
tions.

Piszkin and Levinsky5 developed a nonlinear lifting
line method based in part on the iterative method orig-
inally conceived by Tani.1 As described in Ref. 6, they
were motivated by the need for a method that could
predict adverse wing stalling characteristics such as
wing drop, loss of roll control and roll control reversal
at zero yaw. These characteristics were believed to be
caused by the occurrence of asymmetric lift distribu-
tions on wings with stalled or partially-stalled flow.

The method of Piszkin and Levinsky utilizes a fi-
nite element, unsteady wake, incompressible flow the-
ory that can be used for analysis at either zero or
nonzero yaw. The model uses a single chordwise row
of horseshoe vortices distributed along the span, with
the bound vortex aligned with the local quarter-chord
line. The boundary condition of zero normal flow
is applied at the control point, which is the three-
quarter-chord location for each horseshoe vortex. As
a consequence of using a single chordwise horseshoe
vortex, the method is restricting to wings of moderate
to high aspect ratio. Although Levinsky refers to the
method as a lifting-line method, the vortex model is
more commonly referred to as a vortex lattice method
(with a single chordwise row of horseshoe vortices) or a
discrete-vortex Weissinger’s method. It must be men-
tioned that this method differs from Prandtl’s classical
LLT in the implementation of the boundary condition.

In order to account for the nonlinear lift-curve
slopes, the iterative technique described earlier was
implemented by Piszkin and Levinsky. At each step
of the iteration, the downwash computed using the
Γ distribution from the previous time step is used to
compute the change in the Γ distribution using the air-
foil lift curve. This change, multiplied by a specified
damping factor, C, is then added to the old Γ distri-
bution to obtain the new Γ distribution for the next
iteration. A damping factor of C < 1 is required to
stabilize the iterations, although it results in a larger
number of iterations for convergence. Unlike in the
traditional LLT, where the effective section angle of
attack distribution is computed as part of the solu-
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tion, with the vortex model that Piszkin and Levinsky
used in their method, the effective section angle dis-
tribution is not readily available. They have, however,
bypassed this difficulty by defining the effective down-
wash angle at a section as α3D − α2D, where α3D is
the downwash angle at the control point resulting from
the entire vortex system and α2D is the induced angle
from an infinite span bound vortex along the c/4 line
with strength equal to that of the horseshoe vortex
under consideration. From this downwash angle, they
compute the effective angle of attack at every section
of the wing. This formulation does not include the ef-
fects of sweep and dihedral for the effective angle of
attack.6

Using their method, Piszkin and Levinsky found
that multiple converged solutions are possible, includ-
ing some that have saw-tooth type oscillations in the
spanwise lift distributions. Because they were re-
stricted to the use of 10 panels per side of the wing
in their computer program, they were unable to deter-
mine whether these oscillations are present for more
dense panel distributions. To avoid these oscillations,
they used a switching logic that restarts the iteration
procedure with an initial distribution having a zero
induced α for any wing section found to be stalled.

With this method, the effects of different wing plan-
form shapes and airfoil lift curves were investigated.
Piszkin and Levinsky present the occurrence of lift
hysteresis for increasing and decreasing α and the
occurrence of zero-β rolling moments at post-stall con-
ditions. The results confirm that depending on the
starting solution for the initial lift distribution for the
iteration, multiple solutions are possible for the con-
verged lift distribution for a post-stall angle of attack.
Some of these lift distributions may be asymmetric
even though the flight condition is exactly symmetric.
The asymmetric solutions for zero β were obtained by
using a converged solution for a nonzero β as a start-
ing point for the iteration. Like Sears, Levinsky6 also
points out the need for a method of calculating the
relative stability of the different possible solutions for
the lift distribution at a given angle of attack. Finally,
Levinsky6 points out the need for an unsteady nonlin-
ear lifting surface theory that can handle low aspect
ratio wings for fighters and other such configurations,
as nonlinear methods until that point were capable of
handling only moderate and high aspect ratio wings.
The Piszkin-Levinsky method has recently been used
by Anderson7 for aircraft high-α stability analysis.

Four years after Levinsky’s publication, Anderson,
Corda, and Van Wie8 published a nonlinear lifting-
line theory that they applied to drooped leading-edge
wings below and above stall. At that time, there was
considerable interest in improving the stall-spin behav-
ior of general aviation aircraft, and part-span drooped
leading-edge wings were generating interest for their
benign stall characteristics. Ref. 8 provides a theo-

retical approach to design of such wings and presents
results for CL-α curves that extended to very high
post-stall angles of attack close to 50 deg.

McCormick presents a similar, independently de-
veloped approach9 wherein the nonlinear lifting-line
theory was used to examine the loss in roll damping
for a wing near stall. In both Refs. 8 and 9, no asym-
metric lift distributions for symmetric flight conditions
were observed even when the iterations were started
with asymmetric initial lift. This observation differs
from those of Sears and Levinsky.

An entirely different approach to the use of nonlin-
ear section data was developed by Tseng and Lan.10

While their main focus was on vortex-dominated flows
on low aspect ratio fighter-type wings at high α, they
incorporated the effect of boundary-layer separation
by iteratively reducing the angle of attack at each sec-
tion of the wing. The reduction at any given wing
section is determined by the difference between the
potential flow solution and the viscous Cl from the
nonlinear section Cl-α curve. More recently, an ap-
proach similar to that reported in Ref. 10 was used
in Ref. 11 for rapid estimation of CLmax and other
high-lift characteristics for airplane configurations.

The approach described in this paper is the first part
of an on-going effort aimed at developing an aerody-
namic prediction method for post-stall prediction of
multiple wings. This prediction method will then be
used in developing flight control methods for aircraft
in post-stall flight conditions. In the current research,
a decambering approach was developed wherein the
chordwise camber distribution at each section of the
wing was reduced to account for the viscous effects at
high angles of attack. The current approach has simi-
larity with that developed in Ref. 10, but differs in the
use of both the Cl and Cm data for the section and in
the use of a two-variable function for the decambering.
In addition, unlike all earlier methods, the current ap-
proach uses a multidimensional Newton iteration that
accounts for the cross-coupling effects between the sec-
tions in predicting the decambering for each step in the
iteration.

The subsequent discussion illustrates the decamber-
ing approach by describing its application to model
a two-dimensional flow past an example airfoil. The
iterative approach for three-dimensional geometries is
discussed next. The results from the approach are then
presented for a rectangular wing and a tapered wing
at high angles of attack.

Application to Two-Dimensional Flow
The overall objective was to arrive at a scheme

for incorporating the nonlinear section lift curves in
wing analysis methods such as LLT, discrete-vortex
Weissinger’s method, and vortex lattice methods. For
this purpose, it was assumed that the two-dimensional
data (Cl and Cm as functions of α) for the sections
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forming the wing were available from either experimen-
tal or computational results. The objective was that
for the final solution of the three-dimensional flow, the
Γ distribution across the span would be consistent with
the distribution of the effective α for each section and
the Cl and Cm for each section would be consistent
with the effective α for that section and the section
Cl-α and Cm-α data.

In the current method, this overall objective was
achieved by finding the effective reduction in the cam-
ber distribution for each section along the span. This
“decambering” of the local sections was determined in
an iterative fashion, more details of which are provided
in the next section.

This section provides an overview of the decamber-
ing approach and illustrates the current approach by
using a simple example of a two-dimensional flow past
an NACA-0012 airfoil. It is illustrative to examine
this approach for the two-dimensional situation first
because the approach as applied to the flow past a
three-dimensional finite wing will follow in the suc-
ceeding section.

The typical flow past an airfoil at small angles of
attack consists of a thin boundary layer that remains
attached to the surfaces of the airfoil. For these con-
ditions, the Cl and Cm predicted using potential flow
analysis of the airfoil camberline agrees closely with
the computational and experimental results that ac-
count for viscosity.

With increasing angles of attack, the boundary layer
thickens on the upper surface and finally separates,
as shown in Fig. 1. It is this flow separation that
causes the viscous results for Cl and Cm to deviate
from the predictions using potential flow theory. The
reason for the deviation can be related to the effective
change in the airfoil camber distribution due to the
boundary-layer separation. If the decambering could
be accounted for, then a potential-flow prediction for
the decambered airfoil would closely match the viscous
Cl and Cm for the high-α flow past the original airfoil
shape. This decambering idea served as the basis for
the formulation of the current approach for the three-
dimensional flow problem.

Fig. 1 Flow separation from an airfoil at a high
angle of attack.

While the camber reduction due to the flow separa-
tion can be determined from computational flows, no
such detailed information is available from wind tunnel
results that typically provide only the Cl-α and Cm-α
curves. This section discusses the approach for deter-
mining an “equivalent” camber reduction from Cl-α
and Cm-α curves for an airfoil. More specifically, the

effective decambering for an α was computed using the
deviations of the viscous Cl and Cm from the potential
flow predictions for that airfoil.

In the current method, the effective decambering for
an airfoil was approximated using a function of two
variables δ1 and δ2. The two linear functions shown in
Figs. 2 and 3 were superposed to obtain the final de-
cambering function. Two variables were used because
the decambering was being backed out from two pieces
of information: the Cl and Cm from the airfoil data for
the α under consideration. This approximation will, of
course, not match the actual viscous decambering, but
the objective was to find an equivalent camber reduc-
tion to match the viscous Cl and Cm for the α under
consideration.

δ
1
 

     .........  decambering function 1 

 0  1 x/c

Fig. 2 Schematic diagram of modified camberline
using function 1 (δ1 is negative as shown).

 δ
2

.............. decambering function 2 

 0  1 x/c  x
2

Fig. 3 Schematic diagram of modified camberline
using function 2 (δ2 is negative as shown).

The procedure for calculating the values of δ1 and
δ2 for obtaining the decambering function for an airfoil
at a given α can be summarized as follows:

1. Evaluate the viscous Cl and Cm for the α from
experimental or computational data for the airfoil.

2. Obtain the corresponding potential flow data us-
ing a lumped vortex model of the actual camber-
line for the airfoil.

3. Compute the difference between the viscous and
the potential flow results: ∆Cl = (Cl)visc −
(Cl)potential and ∆Cm = (Cm)visc−(Cm)potential.
These differences are shown schematically in
Figs. 4 and 5 for an NACA-0012 airfoil analyzed
using the XFOIL code.12

4. Use the difference between the viscous and the
potential flow results to calculate the values of δ1

and δ2. Details of how this calculation was done
follow.

The effects of δ1 and δ2 on the change in Cl and
Cm for a given α can be computed reasonably well
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Fig. 4 Cl-α curves from potential and viscous
methods.
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Fig. 5 Cm-α curves from potential and viscous
methods.

using thin airfoil theory and a three-term Fourier series
approximation for a flat plate with a flap deflection.13

These values of δ1 and δ2 in radians for given ∆Cl and
∆Cm have been derived and are presented in Eqs. 1
and 2. In these equations, θ2 is the angular location
of the start point in radians for the function shown in
Fig. 3 and can be expressed as shown in Eq. 3 in terms
of the x-location of this start point, x2. In the current
work, x2 was arbitrarily assumed to be 0.8, although
any value from 0.5 to 0.9 seemed to work well.

δ2 =
∆Cm

1
4 sin 2θ2 − 1

2 sin θ2

(1)

δ1 =
∆Cl − [2(π − θ2) + 2 sin θ2]δ2

2π
(2)

θ2 = cos−1(1 − 2x2);x2 = 0.8 (3)
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Fig. 6 Cl curve obtained using a potential-flow
method with decambering.

To verify the effectiveness of the decambering ap-
proach, the values of δ1 and δ2 were calculated for
the viscous Cl-α and Cm-α data shown earlier for
the NACA-0012 airfoil in Figs. 4 and 5. These val-
ues were then applied as a correction to the flat-plate
camberline for potential flow analysis of the NACA-
0012 airfoil using a lumped vortex method.13 Figure
6 shows for comparison the predicted potential flow
Cl-α curve for the decambered airfoil with the viscous
result from XFOIL analysis. Fig. 7 shows the com-
parison for the Cm-α curve with the viscous result.
The agreement was seen to be very good, which veri-
fied that the two-variable decambering function can be
used to model nonlinear lift as well as pitching moment
curves for high angles of attack.
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Fig. 7 Cm curve obtained using a potential-flow
method with decambering.

To compare the approximate decambering from the
two-variable function with the actual decambering
from the viscous solution, comparison plots have been
made for α of 10, 16 and 18 deg for the NACA-
0012 example. The actual decambering was computed
from the boundary-layer displacement thickness dis-
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tributions predicted by XFOIL. Figures 8, 9, and 10
show (a) the airfoil geometry with the boundary-layer
overlay and (b) the approximate and the actual decam-
bering functions for the three angles of attack. The
progressive increase in the decambering required to
model the boundary-layer separation at the higher an-
gles of attack is seen. Also seen is that the two-variable
function used was a reasonable approximation of the
actual decambering on the airfoil.

a) NACA-0012 airfoil with boundary layer at α of 10 deg.
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b) Decambering function compared with XFOIL result (y-scale

shown enlarged).

Fig. 8 Effectiveness of the decambering for α of
10 deg.

a) NACA-0012 airfoil with boundary layer at α of 16 deg.
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b) Decambering function compared with XFOIL result (y-scale

shown enlarged).

Fig. 9 Effectiveness of the decambering for α of
16 deg.

a) NACA-0012 airfoil with boundary layer at α of 18 deg.
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b) Decambering function compared with XFOIL result (y-scale

shown enlarged).

Fig. 10 Effectiveness of the decambering for α of
18 deg.

This decambering approach was then extended to
the finite wing analysis and the decambering at each
section was evaluated in an iterative fashion.

Application to a Finite Wing
The objective was to incorporate the two-variable

decambering function in a three-dimensional analysis
method such as a vortex lattice method (VLM) in an
iterative fashion. In a typical VLM, the wing is divided
into several spanwise and chordwise panels. Associ-
ated with each of these panels is a horseshoe vortex.
In the current approach, each spanwise section j (com-
posed of a row of chordwise panels) had two variables,
δ1j and δ2j , for defining the local decambering geom-
etry.

Unlike the two-dimensional case, where the δ1 and
δ2 were selected to match the difference between the
potential-flow and the viscous-flow results, in the
three-dimensional case, changing a δ on one section
was likely to have an effect on the neighboring sections
and on sections on the downstream lifting surfaces. To
account for these effects, a 2N -dimensional Newton it-
eration was used to predict the δ1 and δ2 at each of
the N sections of the wing so that the ∆Cl and ∆Cm

at these sections approached zero with an increasing
number of iterations. A 2N ×2N matrix equation has
to be solved for each step of the Newton iteration,14

as shown in Eq. 4.

J · δx = −F (4)
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where F is a 2N -dimensional vector containing the
residuals of the functions fi to be zeroed, δx is the
2N -dimensional vector containing the corrections re-
quired to the 2N variables xi to bring the vector F
closer to zero, and J is the 2N × 2N Jacobian of the
system containing the gradient information. For each
step of the iteration, F and J are determined, and δx
is computed using Eq. 4. The corrections are then ap-
plied to the variables to bring the residuals closer to
zero. In the current scheme, the residual functions f
were the values of the ∆Cl and ∆Cm for each of the
wing sections, and the variables x were the values of
δ1 and δ2 for each of the sections.

The Jacobian can be partitioned into four subma-
trices as shown in Eq. 5. Equations 6–9 show the
elements of the four submatrices.

J =
(

Jl1 Jl2

Jm1 Jm2

)
(5)

(Jl1)i,j =
∂∆Cli

∂δ1,j
(6)

(Jm1)i,j =
∂∆Cmi

∂δ1,j
(7)

(Jl2)i,j =
∂∆Cli

∂δ2,j
(8)

(Jm2)i,j =
∂∆Cmi

∂δ2,j
(9)

The iteration procedure can be summarized as fol-
lows:

1. Assume starting values of δ1 and δ2 for each sec-
tion of the wing.

2. Compute the wing aerodynamic characteristics
using the VLM code.

3. Compute the local section effective angles of at-
tack αsec using the local section (Cl)sec and
Eq. 10. It is to be noted here that in Eq. 10, the
variables δ1, δ2 and θ2 are defined for a each sec-
tion of the wing and are equivalent to those used
earlier for the two-dimensional case in Eqs. 1, 2
and 3.

4. Compute the residuals ∆Cl = (Cl)visc − (Cl)sec

and ∆Cm = (Cm)visc − (Cm)sec. The (Cl)visc

and (Cm)visc are obtained from the known section
data for the angle of attack corresponding to αsec.

5. Calculate the Jacobian matrix for the Newton it-
eration.

6. Solve the matrix Eq. 4 to obtain the perturbations
to δ1 and δ2 at each section and update the values
of δ1 and δ2.

7. Repeat steps 2–6 until ∆Cl and ∆Cm are close to
zero within a specified tolerance.

αsec =
(Cl)sec

2π
− δ1 − δ2[1 − θ2

π
+

sinθ2

π
] (10)

It must be mentioned that for cases where the ex-
perimental/computational viscous data for the airfoil
section does not have Cm, or for cases where the de-
cambering approach is applied to an analysis method
that cannot compute the section pitching moments
(e.g. LLT or a discrete-vortex Weissinger’s method),
the decambering is modeled as a function of a single
variable δ1; δ2 is assumed to be set to zero. In this
case, the viscous decambering function becomes simi-
lar to the α-reduction approach used in Refs. 10 and
11. However, in the current approach, the cross cou-
pling between the sections was still accounted for in
predicting the δ1 values for the next step. In the earlier
approaches, the sections are assumed to be decoupled,
and the δ1 values for each section are predicted using
just the local values of the ∆Cl. For this reason, it is
believed that the current method will be more effec-
tive in handling situations where the section flows are
closely coupled.

Results

The iterative approach discussed in the preced-
ing section was implemented in two different analysis
methods: (1) a custom VLM code (VLM3D) designed
from the outset to have the iterative approach and (2)
a multiple lifting surface code Wings15 based on the
discrete-vortex Weissinger’s method.

To illustrate the effectiveness of the method, results
are presented for a high aspect ratio wing for a rect-
angular geometry with constant chord and zero sweep
and a tapered wing geometry with taper ratio 0.3 and
zero sweep. Both wings have an aspect ratio of 10.
The right-side planforms for the two wings are shown
in Figs. 11 and 12. The airfoil is assumed to have a
lift curve that is shown in Fig. 13. This lift curve is
similar to those used by Sears3 and by Levinsky.6
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0

0.1

0.2

0.3

Fig. 11 Planform of the rectangular wing (RHS
shown).
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Fig. 12 Planform of the tapered wing (RHS
shown).
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Fig. 13 Assumed airfoil lift curve for the example
wing.

Results from Wings (rectangular planform)

Fig. 14 shows the three-dimensional CL-α curve for
the rectangular wing for both increasing and decreas-
ing α. Also shown is the Cl-α curve for the airfoil. For
each α except for the first one, the starting values of
δ1 were taken from the converged result for the previ-
ous α. The hysteresis loop for post-stall condition is
clearly seen confirming that for these conditions there
are multiple solutions. The spanwise Cl distributions
are shown in Fig. 15 for both increasing and decreas-
ing α for α values of 10, 15, 16, and 25. These values
were chosen for illustrating the stall and hysteresis be-
havior.

From Fig. 14, it is seen that as the α was increased to
15.5 deg, the CL continued to increase. At these con-
ditions, the entire wing remained unstalled as the local
section Cl values were less than Clmax of 1.5. This re-
sult can be confirmed by examining the increasing-α
curves for the Cl distributions in Fig. 15 for α of 10
and 15 deg. At α of 15 deg, it is seen that the inboard
portion of the wing was close to stall. As the α was
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Fig. 14 Lift curve from the Wings code for the
rectangular wing for increasing and decreasing α.
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Fig. 15 Spanwise Cl distributions from the Wings
code for the rectangular wing for increasing and
decreasing α.

increased from 15 deg to 18 deg, the inboard portion
of the wing stalled as seen in the increasing-α spanwise
Cl plot for α of 16 deg. As a result the CL decreased
beyond wing α of 15.5 deg. Although the inboard por-
tion of the wing was stalled, the Cl on the outboard
portion continued to increase with α; this caused the
CL to increase again between 16.5 deg and 18 deg.
Beyond 18 deg, the outboard portion of the wing also
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stalled, creating two stall cells on the wing. As the
α was increased to 25 deg, almost the entire wing was
stalled except for three small pockets of unstalled flow.
Because almost the entire wing was stalled, the wing
CL curve started coinciding with the airfoil Cl curve.

When the α was decreased from 25 deg, the lower
portion of the hysteresis loop was formed. Because the
initial solutions for the iterations for the decreasing-α
case were from stalled conditions, the Cl distributions
for α of 16 and 15 deg were different from those for
the corresponding increasing-α plots. As the α was
decreased to approximately 12 deg, the entire wing
became unstalled and the CL curve coincided with the
increasing-α curve.

Results from VLM3D (rectangular planform)

The vortex lattice method (VLM3D) code was used
to analyze the wing shown in Fig. 11. The airfoil char-
acteristics shown in Fig. 13 were used as the section
data. For this analysis, 10 chordwise lattices were
used. Fig. 16 shows the three-dimensional CL-α curve
for the rectangular wing obtained using the VLM3D
code for increasing and decreasing α. Also shown is
the Cl-α curve for the airfoil. Although the results
did not match exactly with the Wings code, the trends
were similar. In particular, the hysteresis behavior was
similar to that predicted by the Wings code. Fig. 17
show the spanwise distributions for the increasing-α
and decreasing-α conditions at four angles of attack.
These results were also similar to those seen from the
Wings code.
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Fig. 16 Lift curve from the VLM code for the
rectangular wing for increasing and decreasing α.
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Fig. 17 Spanwise Cl distributions from the VLM
code for the rectangular wing for increasing and
decreasing α.

Results from Wings (tapered planform)

Results were obtained for the tapered wing geometry
shown in Fig. 12 using the airfoil lift curve data shown
in Fig. 13.

Fig. 18 shows the three-dimensional CL-α curve for
the tapered wing for increasing and decreasing α along
with the Cl-α curve for the airfoil. The spanwise Cl

distributions are shown in Fig. 19 for increasing and
decreasing α for α values of 10, 16, 17, and 25.

From Fig. 18, it is seen that as the α is increased to
16 deg, the CL continued to increase. At these condi-
tions, the entire wing remained unstalled as the local
section Cl values are less than Clmax of 1.5. This re-
sult can be confirmed by examining the increasing-α
curves for the Cl distributions in Fig. 19 for α of 10
and 16 deg. At α of 16 deg, it is seen that the outboard
portion of the wing is close to stall. As the α was in-
creased from 16 deg to 17 deg, the outboard portion of
the wing stalls as seen in the increasing-α spanwise Cl

plot for α of 17 deg. As the α was increased to 25 deg,
almost the entire wing was stalled except for four small
pockets of unstalled flow. These results were similar
to those seen for the rectangular wing, except that the
tapered wing experiences a tip stall as opposed to the
root stall behavior of the rectangular wing.

Results from VLM3D (tapered planform)

Fig. 20 shows the three-dimensional CL-α curve for
the tapered wing for increasing and decreasing α along
with the Cl-α curve for the airfoil. Fig. 21 show
the spanwise distributions for the increasing-α and
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Fig. 18 Lift curve from the Wings code for the
tapered wing for increasing and decreasing α.
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Fig. 19 Spanwise Cl distributions from the Wings
code for the tapered wing for increasing and de-
creasing α.

decreasing-α conditions at four angles of attack. As
with the rectangular wing, the comparison between
the results from the two codes for the tapered wing
were in close agreement.
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Fig. 20 Lift curve from the VLM code for the
tapered wing for increasing and decreasing α.
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Fig. 21 Spanwise Cl distributions from the VLM
code for the tapered wing for increasing and de-
creasing α.

Conclusions

Successful prediction of near and post-stall wing
aerodynamics is essential for modeling of flight vehicle
stability and control at high angles of attack. Some of
the potential benefits include reduction in landing dis-
tances, ability to execute evasive maneuvers, and abil-
ity to avoid loss of control when encountering severe
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atmospheric turbulence and downbursts. The research
presented in this paper was part of an on-going effort
aimed at the development of high-α aerodynamic pre-
diction methods for aircraft.

In this early part of the research, a method has been
developed for stall and post-stall analysis of wings us-
ing known two-dimensional lift and moment curves for
the airfoil. The method uses a decambering approach
that accounts for the boundary-layer separation effects
for each section of the wing in an iterative fashion. For
the iteration process, a multidimensional Newton iter-
ation was used that automatically took into account
the effect of the decambering at one section on the
lift at all of the other sections. The current approach
also uses a two-variable decambering function that was
determined by deviations in the local section Cl and
Cm values from those predicted using potential flow.
Results are presented for a rectangular wing at high
angles of attack. Unlike the results in earlier work,9

the spanwise lift distributions did not exhibit high-
frequency spanwise oscillations. This improvement is
believed to be due to the use of a multidimensional
Newton iteration that accounted for the cross-coupling
effects at every step of the iteration.

In follow-on work, the approach described in this pa-
per will be refined. The results will be generated using
the code for wing configurations for which experimen-
tal data is available. These experimental results will
be used for validation of the current approach. The
approach will then be extended and applied to mul-
tiple wing configurations (wing-tail and wing-canard
configurations). The methods will also be extended
to nonzero yaw flight conditions to examine the pos-
sibility of generating antisymmetric lift distributions
at symmetric flight conditions. These methods will
subsequently be used to generate aerodynamic mod-
els that will be used in a parallel, on-going effort to
develop control techniques for high-α flight. The fi-
nal aim will be to make progress in the prediction and
control of aircraft at post-stall flight conditions.
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